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Abstract

This paper studies multi-network firms’ dynamic pricing strategy when prod-
ucts are subject to network effects. Compared with single-network firms, multi-
network firms prefer network concentration, have greater market power, and face
spillover effects across firms. We setup a finite-horizon two-network model to
compare the pricing strategies of single- and multi-network firms. We find that
multi-network firms set lower prices for larger networks than for the smaller net-
works. This pricing strategy is the opposite of single-network firms’ strategy. As
a result, the network market is more concentrated with multi-network firms than
with single-network firms. Using the smartphone price data for U.S. from 2011
to 2013, we show that the multi-network telecom carriers choose lower prices for
the smartphones with larger operating system networks.
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1 Introduction

In many industries, goods are subject to network effects, indicating a positive exter-

nality among the users of a good. Two types of firms exist in these markets, single-

and multi-network firms. A single-network firm sells goods that are all associated with

the same network. Multi-network firms sell goods that are associated with different

networks. The literature on network effects has focused on single-network firms and

paid little attention to multi-network firms. However, multi-network firms exist in

many markets. For example, smartphones are subject to operating system (OS) net-

work effects (e.g., iOS and Android), and telecommunication carriers sell multiple OSs’

models (e.g., AT&T and Verizon). Television networks (e.g., ESPN and NBC) gener-

ate network effects through channels, and cable and satellite companies offer multiple

television networks to subscribers. Network effects also exist for automobile manufac-

turers, and a dealer can sell multiple manufacturers’ models. To fill the gap, we study

the multi-network firms’ dynamic pricing strategy in this paper.

The two types of firms face both similar and different factors when choosing prices.

Katz and Shapiro (1986) and Klemperer (1987) study single-network firms’ pricing

equilibrium. They point out that single-network firms face a trade-off between investing

in future network size with low prices and harvesting the current network size with high

prices. This trade-off also applies to multi-network firms. A multi-network firm faces

this trade-off for multiple networks.

However, multi-network firms’ pricing problem is more complex in three aspects.

First, a multi-network firm’s profit can increase with network concentration. As con-

centration increases, consumers’ willingness to pay for the larger network rises, which

increases firms’ profits. To achieve greater concentration, multi-network firms have an

incentive to choose relatively lower prices for the large networks than for the small net-

works. This strategy is the opposite of single-network firms’ pricing strategy. Cabral
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(2011) finds that the greater market power of large single-network firms allows them to

choose higher prices than small single-network firms.

Second, multi-network firms have greater market power and can internalize the com-

petition across networks. When a single-network firm increases the price of its network,

all switching consumers will choose other networks or the outside option. However,

when a multi-network firm increases the price of a network, some switching consumers

will choose the firm’s other networks. This gives the multi-network firm greater market

power than single-network firms, and they set higher prices for all networks, compared

with single-network firms.

Third, when multi-network firms compete on the same networks, one firm’s low

prices increase the network sizes, which also benefit other multi-network firms. Thus, a

positive spillover effect exists among multi-network firms. This weakens their incentives

to invest in network size by choosing low prices,. Therefore, multi-network firms’ pricing

problems are more complex.

To study multi-network firms’ pricing strategies, we compare single- and multi-

network firms’ dynamic pricing strategies in a finite-horizon model. On the demand

side, consumers make discrete choices among two networks and an outside option. Once

a consumer purchases a product, he exits the market in the following periods. Thus, the

market size evolves with the network sizes. On the supply side, we consider two settings,

with single-network firms and multi-network firms, respectively. In the first setting, we

consider two single-network firms, each of which sells a good that is associated with

a different network. In each period, the firms choose the goods’ prices, and the two

firms play a dynamic pricing game. In the second setting, we consider a monopolist

multi-network firm that chooses the prices for the two goods in each period. We analyze

the impacts of competition on multi-networks’ prices using numerical examples.

The main findings are as follows. First, multi-network firms choose a lower price for
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the initially larger network than for the smaller network before the last period. This

counter-intuitive strategy is due to the impact of multi-network firms’ preference for

network concentration. Multi-network firms can obtain greater long-run profits as the

network concentration increases. Second, with single-network firms, the initially larger

network has a higher price than the smaller network in each period. This is similar

to the finding in Cabral (2011), although the demand model is different in this paper.

In addition, we find that, although the larger network has a higher price, it can keep

the network size advantage throughout the game. Third, the network market is more

concentrated in the multi-network firm case, compared with the single-network firm

case.

The multi-network firms’ pricing strategy shows up in the smartphone industry.

Smartphones are subject to network effects at the OS level (Bresnahan, Orsini, and

Yin (2014), Sinkinson?, Luo (2022)). The telecom carriers act like multi-network firms

in the U.S. since they each sell multiple OSs’ smartphone models. Using monthly

smartphone price data from 2011 to 2013, we find that the carriers’ prices for the larger

OSs (iOS and Android) are lower than the prices for the smaller OSs (Blackberry and

Windows). This finding is consistent with the multi-network firms’ pricing strategy in

the theoretical model.

This paper is closely related to Cabral (2011), which studies two single-network

firms’ pricing game in an infinite-horizon game. Cabral (2011) assumes that the market

size is constant across periods, and consumers do not have an outside option. The model

in this paper is different in three ways. First, the market size evolves endogenously in

this paper. As more consumers join the networks, the amount of prospective consumers

decreases. This implies that the firms’ prices will affect the future market size and thus

the long-run total profits. Second, consumers have an outside option in each period,

which is to not join any networks. Third, this paper considers a finite-horizon game due
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to the non-stationarity of the firms’ profit-maximization problems. As more and more

consumers join the networks, the market size decreases over time. Thus, we consider a

finite-horizon game in this paper.

This article contributes to the network effect literature by studying the multi-

network firms’ dynamic pricing strategy. Existing theoretical research on network ef-

fects has focused on single-network firms. Many papers studied the pricing strategies of

monopolistic and oligopolistic single-network firms, including Katz and Shapiro (1985),

Farrell and Saloner (1986), Katz and Shapiro (1992), Katz and Shapiro (1994), Shapiro

and Varian (1999), Rochet and Tirole (2003), Armstrong (2006), Rochet and Tirole

(2006) Zhu and Iansiti (2007), Rysman (2009), Weyl (2010), and Cabral (2011). This

paper is the first to analyze multi-network firms’ pricing strategy. We find that multi-

network firms’ dynamic pricing strategy is the opposite of the single-network firms’

strategy.

The empirical literature has studied markets where single-network manufacturers

choose retail prices, including Rysman (2004), Park (2004), Nair, Chintagunta, and

Dubé (2004), Ackerberg and Gowrisankaran (2006), Dubé, Hitsch, and Chintagunta

(2010), Lee (2013), and Gowrisankaran, Park, and Rysman (2014). In these studies,

firms cannot cannot choose prices for multiple networks or set differentiated prices

across networks. In this paper, we focus on the multi-network firms, for whom the

ability to internalize competition across networks and set differentiated prices plays an

important role.

The paper proceeds as follows. Section 2 describes a discrete choice demand model

of consumers choosing the networks. In section 3, we set up the two supply settings in

a finite-horizon framework and compare the pricing strategies in the two settings. We

also compare the degree of network concentration between the two settings. In section

4, we increase the number of periods in the dynamic game and use numerical examples
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to show the two types of firms’ pricing strategies. In section 5, we consider competition

among multi-network firms. In Section 6, we use smartphone price data to analyze the

multi-network telecom carriers’ pricing strategies. Section 7 concludes the paper.

2 Consumer Demand

Consider two durable goods with network effects, A and B. They are associated with

two different networks. To simplify notation, we denote their networks by {A,B}.

Consumers can purchase the goods in any period t ∈ {1, 2, ..., T}. Once a consumer

purchases a good, he joins the associated network and does not enter the market again.

Let the total mass of consumers be one. Denote the two networks’ market shares at the

beginning of period t by nt = (nAt, nBt). Assume that, some consumers are not on either

of the two networks at the beginning of the first period, nA1 +nB1 < 1. In each period,

only the consumers who have not joined any network enter the market and considers

whether to purchase a good. Thus, the market size in period t is Mt = 1− nAt − nBt.

Consumer i’s utility from purchasing good j ∈ {A,B} in period t is

uijt = δj + γnjt − αpjt + εijt,

where δj measures good j’s quality, pjt is the price of good j, and εijt is an idiosyncratic

utility shock. The parameter, γ(> 0), measures the network strength, and γnjt is the

utility from the network effect of good j. In addition to the two goods, an outside

option exists, which means not buying either of the two goods. Consumer i’s utility of

the outside option is ui0t = εi0t. The mean utility of the outside option is zero, and εi0t

is the utility shock. To focus on the network effect, we assume that the two goods have

the same quality, δA = δB.

Assume that εijt follows the Type-I extreme value distribution and is independent
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and identically distributed (i.i.d.) across consumers, goods, and time periods. Given

these assumptions, the sales market share of good j ∈ {A,B} in period t is

sjt(pAt, pBt;nt) =
e(δj+γnjt−αpjt)

1 +
∑

k=A,B e(δk+γnkt−αpkt)
. (1)

This share increases with δj and njt and decreases with pjt. The two networks grow

due to new sales of the goods. Due to the durability of the goods, consumers exit the

market once they purchase the goods. At the beginning of the period t+ 1, each firm’s

network size is the sum of the network size in period t and the new consumers in period

t. The market share of network j is

njt+1 = njt +Mtsjt(pAt, pBt;nt). (2)

The literature on network effects often uses other demand models to analyze firms’

pricing strategies. Many studies use the Hotelling framework to model consumers’

demand for heterogeneous products. This paper does not apply the Hotelling model

for two reasons. First, the Hotelling model does not consider the outside option for

consumers. However, allowing for the outside option is important in the dynamic

evolution of the network sizes and market size in this paper. It is different to derive the

equilibrium demand when introducing the outside option to the Hotelling model. The

discrete choice model is more tractable when considering the outside option. Second,

extending the static Hotelling model to a dynamic framework makes it very challenging

to solve for the subgame perfect Nash equilibrium of the firms’ dynamic game.

Cabral (2011) uses a stylized demand model to analyze single-network firms’ dy-

namic pricing game. He makes two assumptions. First, in each period, a new consumer

enters the market and an existing consumer dies. This assumption does not allow for

variation in the market size over time. In this paper, the market size evolves with the
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two networks’ sizes. As more consumers adopt the goods, the market size decreases

over time. Second, the new consumer does not have an outside option. This assump-

tion diverges from the reality in which consumers may choose to not join any network.

The discrete choice model allows the market size to evolve over time and considers the

outside option.

3 Single- and Multi-Network Firms’ Dynamic Pric-

ing

In this section, we analyze two supply settings in a finite-horizon two-network model,

with single- and multi-network firms, respectively. The goal is to compare the pricing

strategies of the two single-network firms. We first show that a multi-network firm

sets a lower price for the smartphone with the larger network and single-network firms

choose the opposite pricing strategy. We then show that the network market becomes

more concentrated in multi-network firm setting than in the single-network firm setting.

3.1 Single-Network Firms

Consider two single-network firms, A and B. Firm A sells good A, and firm B sells good

B. Assume that the firms have constant marginal costs, (cA, cB). They play a dynamic

pricing game. Firm j ∈ {A,B}’s profit in period t is

πsjt(p
s
At, p

s
Bt;nt) = (psjt − cj)sjt(psAt, psBt;nt)Mt,
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where the superscript s denotes the single-network firm case. In period t(< T ), the

profit maximization problem of firm j is

max
psjt
{πsjt(psAt, psBt;nt) + βdV s

jt+1(nt+1;nt,p
s
t)},

where pst = (psAt, p
s
Bt) is the price vector, and βd is the discount factor. The network

size evolves according to the transition rule in equation (2). The future value function,

V s
jt+1, is firm- and time-specific. It is firm-specific because the firms have asymmetric

network sizes. It is time-specific because the number of periods left varies over time in

the finite-horizon game.

The first-order condition (FOC) with respect to psjt is

sjtMt − (psjt − cj)αsjt(1− sjt)Mt + βd
∂V s

jt+1

∂psjt
= 0, (3)

where −αsjt(1−sjt) is the partial derivative of sjt with respect to (w.r.t.) psjt. The first

term in the FOC is the markup effect on the current profits. When psjt increases, firm

j’s markup on the good increases by the same amount. The second term is the impact

of price on the current sales. As psjt increases, the demand (sjt) decreases, leading to a

negative impact on the current profits. The last term in the FOC is the impact of psjt

on firm j’s future profits.

In period t < T , the prices in period t affect V s
jt+1 through nAt+1 and nBt+1.

1

For example, increasing pAt has a few impacts on the firm’s future profits. First, a

higher pAt reduces nAt+1 due to lower sAt in period t, which has a negative impact on

the consumers’ utility from buying A and firm A’s profits in period t + 1. Second, a

higher pAt increases the sales of good B and nBt+1. This has a negative impact on the

network size and firm A’s profits in period t+1. Third, a lower nAt+1 implies that more

1That is,
∂V s

jt+1

∂ps
jt

=
∂V s

jt+1

∂nAt+1

∂nAt+1

∂ps
jt

+
∂V s

jt+1

∂nBt+1

∂nBt+1

∂ps
jt

.

8



consumers enter the market in period t + 1, which has a positive impact on firm A’s

profits in period t+ 1.

At the same time, the two firms compete with each other. A lower pAt helps firm A

to attract more consumers and reduces firm B’s sales. This increases firm A’s network

size in period t + 1. Both firms have this incentive to use low prices to invest on the

future network sizes. In equilibrium, the initial network advantage of firm A gives it

greater market power than firm B since consumers obtain higher utility from good A

when the network effect exists (γ > 0). This leads to a higher equilibrium price for firm

A than firm B in each period.

In period T , both firms only maximize the current period’s profits. Thus, firm j’s

profit maximization problem is max
psjT

{πsjT (psAT , p
s
BT ;nT )}. The FOC w.r.t. psjT is

sjTMT − (psjT − cj)αsjT (1− sjT )MT = 0. (4)

The firm’s future value is 0 in period T . When choosing the optimal price, the firms

only face the trade-off between the markup effect and the sales effect. As in equation

(3), the first term is the impact of the markup effect on profits, and the second term is

the impact of the sales effect on profits.

Without loss of generality, we consider the case in which A has a higher market share

than B in the first period, nA1 > nB1. This initial asymmetry in network size can arise

if the networks enter the market at different time periods or if they have experienced

different demand or cost shocks. We maintain this assumption in all following sections.

We use backward induction to solve for the equilibrium prices. Denote the single-

network firms’ equilibrium prices in period t by {p∗sAt, p∗sBt}. In period T , we use the

FOCs to solve for the prices explicitly. The equilibrium prices, {p∗sAT , p∗sBT}, are functions

of (nAT , nBT ). In period t < T , solving for the prices involves V s
jt+1(nAt+1, nBt+1). We

obtain V s
jt+1(nAt+1, nBt+1) by solving for the equilibrium prices in all following periods
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and calculating the total discounted profits.2

To prove this result analytically, we consider a two-period game (T = 2) in the rest

of this section. Due to the dynamic impacts of current prices on the future network

sizes, it is very challenging to solve for the equilibrium prices when T ≥ 3 analytically.

Thus, we first study the two types of firms’ equilibrium pricing strategies with T = 2 in

this section. In the next section, we extend the model to cases with T ≥ 3 and analyze

the equilibrium pricing strategies numerically.

Proposition 1. (1) In the subgame perfect Nash equilibrium, the price of A is higher

than the price of B in both periods. That is, p∗sAt > p∗sBt, for t = 1, 2.

(2)Firm A keeps its network advantage in the second period, nA2 > nB2.

Proof. See section A.1 of the Appendix for the proof.

Firm A chooses higher prices because it has the initial OS network size advantage.

Suppose that pAt = ps∗Bt, then firm A’s marginal profits from increasing pAt is positive

due to higher demand for network A. In this case, firm A can increase profits by increas-

ing its price. While this finding is similar to the results in ?, the model assumptions in

this paper are very different. Although firm A chooses a higher price than firm B in

the first period, it can keep the network advantage in the second period. Proposition 1

holds as long as the discount factor βd is positive.

3.2 A Monopoly Multi-Network firm

Now consider a multi-network firm who sells the two networks’ products and chooses

prices of them to maximize the long-run total profits. The firm’s profit in period t is

2For t = T − 1, we can derive the expression for V s
jt+1(nAt+1, nBt+1) analytically by solving for

the prices in period T . For t < T − 1, deriving the expression for V s
jt+1(nAt+1, nBt+1) becomes very

difficult. Therefore, we analyze the game when T = 2 analytically and use numerical examples when
T ≥ 3.
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the sum of the profits from the two products:

πt(p
m
At, p

m
Bt;nt) = [(pmAt − cA)sAt(p

m
At, p

m
Bt,nt) + (pmBt − cB)sBt(p

m
At, p

m
Bt,nt)]Mt,

where the superscript m denotes a multi-network firm, and (sAt, sBt) are the sales

market shares of the two networks as in equation (1). The profit-maximization problem

in period t is

max
pmAt,p

m
Bt

{πt(pmAt, pmBt;nt) + βdV m
t+1(nt+1;nt,p

m
t )}, (5)

subject to the transition rule in equation (2).

The multi-network firm not only faces the inter-temporal trade-off as single-network

firms but also needs to internalize the competition across networks. Within period t, a

higher pmAt increases the firm’s markup on product A, reduces the sales of product A,

but increases the sales of product B. Across periods, the higher pmAt leads to a greater

market size, a greater network size of B, and a smaller network size of A in period t+1.

The multi-network firm not only considers the

As explained in the introduction, the multi-network firm’s pricing problem is more

complex than the single-network firms’ pricing problem. The three differences between

the two types of firms affect the multi-network firms’ optimal pricing strategy. First, the

multi-network firm has an incentive to choose lower a price for the larger network due

to the convexity of profits in network concentration. We show that the multi-network

firm’s last-period profit is convex in (nAT , nBT ) in section A.2 of the Appendix. Second,

the multi-network firm has greater market power, which allows it to set higher prices

for the networks, compared with single-network firms. Third, the spillover effects across

multi-network firms reduces their incentive to invest on the network size and thus has

a positive impact on the prices.

Similar to the single-network firms’ case, we analytically study the multi-network
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firm’s pricing strategy for T = 2. In section 4, We use numerical examples to analyze

the multi-network firm’s strategy for T ≥ 3. Let the optimal prices when T = 2 be

(pm∗A1 , p
m∗
B1 , p

m∗
A2 , p

m∗
B2). We find the following results.

Proposition 2. (1) A has a lower price than B in the first period: pm∗A1 < pm∗B1 .

(2) The price difference, |pm∗A1 − pm∗B1 |, increases with the network effect strength, γ.

(3) The difference in the two networks’ market shares in the second period, (nA2−nB2),

increases with γ.

Proof. See section A.2 of the Appendix for the proof.

The first result of Proposition 2 says that the multi-network firm chooses a lower

price for the larger network A than for B in the first period. This implies that the

multi-network firm’s preference for network concentration plays an important role. The

intuition is that this pricing strategy can increase the network concentration, which

raises consumers’ willingness to pay for the large network.

The second result means that price differentiation increases as the network effect

strength increases. As γ increases, it is easier to increase network concentration due

to the stronger positive externality among users of the larger network A. However, this

does not reduce the multi-network firm’s incentive to set lower price for A. Instead, the

firm chooses even greater price difference. This implies that the marginal benefit of

using the differentiated prices increases with γ.

The third result implies that the market becomes more concentrated as the network

effect increases. A higher γ has two positive impacts on network concentration. First,

a higher γ implies that the initially larger network A can attract more consumers than

network B, even when the two networks have the same price. This increases the network

concentration. Second, as in the previous result, the greater network effect also increases

the firm price differentiation, which further enhances the network advantage of A.
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The results in Proposition 2 hold when γ > 0 and βd > 0. If γ = 0, then A and

B will have the same price because consumers have the same utility from them. The

discount factor also affects the first period prices. If βd = 0, the optimization problem

is static. In this case, the Logit demand model implies that the firm will choose the

same price for the two products because their cross-derivatives of prices are the same.3

3.3 Network Concentration

Multi-network firms invest on network concentration by sacrificing the ability to harvest

on the initial network advantage of the larger network. Single-network firms also have

an incentive to invest, but they each invest on their own networks. In equilibrium, the

initially larger network’s price is greater than the smaller network’s price in each period.

Although the initially larger network can keep its advantage over time, the equilibrium

prices reduce the network concentration, compared with the multi-network case.

Figure 1: Network Concentration with Multi- and Single-Network Firms

We use numerical examples to show degree of network concentration. Figure 1

shows the network concentration in the single- and multi-network firm cases in a two-

period model. The horizontal axis is the market share of network A in the first period,

3The cross derivatives are αsAtsBt.
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nA1 ∈ [0, 0.35]. The market share of B is fixed at nB1 = 0.10.4 The vertical axis is the

network market share in the beginning of the second period, (nA2, nB2). The curves

with triangular and circle markers are nsA2 and nsB2 in the single-network firm case,

respectively. The solid and dash curves are nmA2 and nmB2 in the multi-network firm

case, respectively. Figure 1 shows that, when nA1 = nB1, nA2 = nB2 in both cases.

That is, the two curves cross each other at nA1 = 0.10(= nB1). When nA1 > (<)nB1,

nA2 > (<)nB2 in both cases, which implies that the networks can keep their initial

network size advantage. When nA1 = nB1, the cross point in the single-network firm case

is above the cross point in the multi-network firm case. This is because the monopolist

multi-network firm chooses higher prices than the single-network firms, so (nA2, nB2)

are smaller in the multi-network firm case. However, when nA1 6= nB1, the networks in

the multi-network firm case are more concentrated, compared with the single-network

firm case.

Although Figure 1 only considers a monopolist multi-network firm, the results above

will hold when one considers competing multi-network firms. As section 5 will show,

when there are competing multi-network firms, they all choose lower prices for the

initially larger network. Furthermore, the multi-network firms’ prices for all networks

go down when competition increases. Therefore, the network concentration will be

greater when more competing multi-network firms enter the market.

4 Numerical Examples for T > 2

In a T-period dynamic game, the single- and multi-network firms still face the same

trade-offs as in the two-period model. In period T, the multi-network firm faces a static

pricing problem, and the single-network firms play a static pricing game. In period

t < T , the multi-network firm has an incentive to increase network concentration, since

4The parameter values are α = 2, γ = 8, β = 0.96, δa = δb = 0, ca = cb = 0.
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the profit function in the last period is convex in (nAT , nBT . Thus, the firm chooses a

lower price for the larger network, while a single-network firm chooses a higher price if

the firm has a larger network size. In this section, we use numerical example to show

the pricing strategies of multi- and single-network firms for T ≥ 2.

Figure 2 shows the equilibrium prices of two single-network firms in a finite-horizon

game for T ∈ {2, 3, 4}.5 In each subfigure, the x-axis is nAt (t ≤ T ), the y-axis is nBt,

and the z-axis shows the prices, (psAt, p
s
Bt) in period t. The scatter plot with blue dot

markers are psAt, and the scatter plot with red asteroid markers are psBt. Subfigures (a)

and (b) are the prices in the first and second periods when T = 2. When nAt > nBt,

the prices satisfy psAt > psBt. This finding is in line with the results in proposition 1.

Subfigures (c), (d), and (e) in Figure 2 plot the prices in each of the three periods

when T = 3. Subfigures (f), (g), and (h) plot the prices in the last three periods when

T = 4. These figures also show that the equilibrium price of the larger network is

always greater than the price of the smaller network in each period when T ∈ {3, 4}.

This indicates that the single-network firms’ pricing strategies in Proposition 1 holds

when T > 2.

5I first generate the grid values for nAt and nBt. To solve for the prices in period T , we use the
FOCs in period T . To solve for prices in period T − 1, we first ....
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Figure 2: Single-Network Firms’ Prices (T=2,3,4)

(a) (psA1, p
s
B1), T=2 (b) (psA2, p

s
B2), T=2

(c) (psA1, p
s
B1), T=3 (d) (psA2, p

s
B2), T=3 (e) (psA3, p

s
B3), T=3

(f) (psA2, p
s
B2), T=4 (g) (psA3, p

s
B3), T=4 (h) (psA4, p

s
B4), T=4
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Figure 3: A Multi-Network Firm’s Prices (T=2,3,4)

(a) (pmA1, p
m
B1), T=2 (b) (pmA2, p

m
B2), T=2

(c) (pmA1, p
m
B1), T=3 (d) (pmA2, p

m
B2), T=3 (e) (pmA3, p

m
B3), T=3

(f) (pmA2, p
m
B2), T=4 (g) (pmA3, p

m
B3), T=4 (h) (pmA4, p

m
B4), T=4

Figure 3 shows the equilibrium prices of a monopolist multi-network firm for T ∈

{2, 3, 4}. In each subfigure, the x-axis is nAt, the y-axis is nBt, and the z-axis shows the

prices, (pmAt, p
m
Bt) in period t. As in Figure 2, the scatter plot with blue dot markers are

pmAt, and the scatter plot with red asteroid markers are pmBt. Subfigures (a) and (b) are

the prices in the first and second periods when T = 2. Subfigure (a) shows that, when

nA1 > nB1, the prices satisfy pmA1 < pmB1. That is, the multi-network firm chooses a lower

17



price for the larger network in the first period. Subfigure (b) shows that pmA2 = pmB2 in

the second period. These findings are consistent with the results in proposition 2.

Subfigures (c), (d), and (e) plot the prices each of the three periods when T = 3.

Subfigures (f), (g), and (h) are the prices in the last three periods when T = 4. Similar

to the results for T = 2, the prices satisfy pmAt < pmBt when nAt > nBt for t < T , and

vice versa. In the last period, the multi-network firm chooses the same price for the

two networks, pmAT = pmBT . This indicates that the multi-network firm starts to build

network concentration from the first period. Therefore, the multi-network firm chooses

a lower price for the larger network when t < T , when T ∈ {3, 4}. This indicates that

the price pattern in Proposition 2 holds when T > 2.

5 Competing Multi-Network firms

Competition among multi-network firms may affect the results in Proposition 2. Com-

petition has two impacts on multi-network firms’ prices. First, competition drives down

the prices. As the number of multi-network firms increases, the equilibrium prices for

all network will decrease. This is the same to the impact of competition on prices in

markets without network effects. Second, all competing multi-network firms have the

incentive to choose lower prices for the initially larger network before the last period.

That is, multi-network firms will not invest on different networks by choosing lower

prices for different networks. To see this, consider a two-period duopoly model with

two identical multi-network firms, 1 and 2. Suppose that firm 1 chooses a lower price

for network A in the first period. Given firm 1’s pricing strategy, firm 2’s best response

is to choose the same strategy. If instead, firm 2 chooses a lower price for B, then its

profits will be lower than if it sets the same prices as firm 1. When the two firms choose

the same prices, they will obtain the same profits. However, when firm 2 chooses a

lower price for network B, then firm 1 will attract more consumers due to the network
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advantage of network A. In this case, firm 2’s profits will be less than when it can split

the market with firm 1.

To show the impacts of competition on the prices, we solve numerical examples

with two identical multi-network firms who play a two-period dynamic pricing game.

The equilibrium prices show the following results. First, the two firms choose the same

prices for the two networks. This occurs because the two firms are identical. Second,

both firms set a lower price for A than for B in the first period, which is the same as

in the monopoly case. This indicates that they do not invest on different networks.

Third, competition leads to lower equilibrium prices in the duopoly case than in the

monopoly case.

I show these results in Figure 4. Figure 4a compares (pm∗A1 , p
m∗
B1) under the monopoly

and duopoly cases. The horizontal axis is nA1, ranging from 0.1 to 0.3. We fix the initial

share of network B at 0.1 in both cases. The curves with circle and triangle markers

are pm∗A1 and pm∗B1 in the monopoly case, respectively. The dashed and solid curves are

pm∗A1 and pm∗B1 in the duopoly case, respectively. This figure confirms the findings above.

First, in both cases, network A has a lower price than network B, pm∗A1 < pm∗B1 . Second, in

the duopoly case, the two firms choose the same pricing strategy. Third, the equilibrium

prices for both networks are lower in the duopoly case than in the monopoly case.

19



(a) Prices under Monopoly and Duopoly (b) Network Size under Monopoly and Duopoly

Figure 4: A Monopoly Multi-network firm vs. Duopoly Multi-network firms

Figure 4b plots nA2 and nB2 under the two cases. The horizontal axis is nA1. The

curves with circle and triangle markers are nA2 and nB2 in the monopoly case, respec-

tively. The dashed and solid curves are nA2 and nB2 in the duopoly case, respectively.

We find the following results. First, in both cases, network A has a larger share than

network B in the second period. Second, both networks have higher market shares,

(nA2, nB2), in the duopoly case than in the monopoly case. This is because both net-

works have lower prices in the duopoly case. Third, as nA1 increases, nA2 increases and

nB2 decreases. This implies that, as the initial network advantage of network A goes up,

network B attracts fewer consumers in the first period and the network concentration

increases.
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6 Application: Telecom Carriers’ Pricing of Smart-

phones

6.1 The OS Network Effect and Multi-OS Telecom Carriers

To see the multi-network firms’ pricing strategies in practice, we analyze the telecom

carriers’ pricing strategies for smartphones in the U.S.. Smartphone OSs are subject

to direct and indirect network effects. An indirect network effect exists because de-

velopers prefer to launch apps on OSs with more users, and users are more likely to

adopt OSs with more apps. In addition, a direct network effect also exists due to the

benefits of adopting the same OS with friends and family (e.g., low learning cost of

using smartphones with the same OS, ease of sending files and photos, and sharing of

app and music purchases). Bresnahan, Orsini, and Yin (2014) find a positive feedback

loop of the indirect network effect for smartphones. By estimating a structural model

of consumers’ demand for smartphones, Luo (2022) finds that the OS network effect is

positive and significant.

Given the OS network effects, we use the monthly carrier-OS-level data in Luo (2022)

to show the pricing strategy of the telecom carriers in this section. The sample period

is August 2011 to September 2013. During this sample period, the leading carriers

were Verizon, AT&T, Sprint, and T-Mobile, and there were four major smartphone

OSs, iOS, Android, Blackberry, and Windows Phone. Each carrier sold multiple OSs’

smartphone models.

During the sample period, the telecom carriers did not sell the smartphones at the

manufacturers’ retail prices. Instead, they used the two-year contract mode in order to

attract more consumers. If consumers signed two-year wireless service contracts, they

could receive significant discounts on smartphones. For example, the iPhone 5’s retail

price was $649, but a consumer only had to pay $199 to the carriers if he signed a
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contract. The two-year contract mode was very successful. According to the US Wire-

less Industry Overview 2011, more than 78% of mobile phone users were on two-year

contracts. The percentage was even higher for smartphones which were significantly

more expensive than feature phones without the contracts. The discounts on the smart-

phones varied across carriers, OSs, and models. By choosing the contract discounts for

the smartphones, the carriers were able to choose differentiated discounts across OSs

to maximize long-run profits.

The data covers four carriers (Verizon, AT&T, Sprint, and T-Mobile) and four OSs

(iOS, Android, Blackberry, and Windows Phone). This dataset includes the smartphone

prices with two-year contracts, the manufacturers’ smartphone prices, the cumulative

number of OS users (network size), and the smartphone characteristics. We aggregate

these variables to the carrier-OS level. In each month, there are up to 16 carrier-OS

product combinations since Sprint and T-Mobile only started selling iPhones later in

the sample period. The total number of carrier-OS-month observations is 355.

6.2 Multi-OS Carriers’ Pricing Strategy

To analyze the carriers’ pricing strategy, we regress the two-year contract phone prices

on the OS network size. In each month, the OS network size is the number of OS

users at the end of the previous month. Other control variables in the regression

include the manufacturers’ retail price, phone characteristics, number of OS version

updates, OS dummies, and carrier dummies. The results are in Table 1. Column (1)

shows the ordinary least squares (OLS) results. The coefficient for OS size indicates a

negative correlation between the lagged OS network sizes and the carriers’ smartphone

prices. This negative correlation means that the carriers choose relative lower prices

for the larger OSs, which is consistent with the multi-network firms’ pricing strategy

in Proposition 2 and Figure 4a. Since Apple produces all the iOS models, the negative
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correlation might coincide with Apple reducing prices of old models over time and iOS’s

market share increasing. Thus, we drop the iOS observations in column (2), and the

negative correlation still exists.

The OS network size is endogenous if the error term in the OLS regression has a

serial correlation. To address this issue, we use the current monthly cumulative number

of apps of each OS as the IV for the network size. Since it takes months to develop an

app, we assume that the number of apps is not correlated with the current unobserved

quality. This IV passes the commonly used weak-IV test.6 Columns (3) and (4) of

Table 1 show the IV regression results. Column (3) uses all the observations, and

column (4) drops the iOS observations. The results in these two columns still show a

negative correlation between the carriers’ smartphone prices and the OS network sizes.

Therefore, the multi-OS carriers choose lower prices for the larger OSs than for the

smaller OSs.

Table 1: Regression of Carriers’ Contract Phone Prices on OS Network Sizes ($100)

(1) (2) (3) (4)
VARIABLES Price Price Price Price

OLS OLS (no iOS) IV IV (no iOS)

OS size -0.876** -0.974* -1.736*** -2.419***
(0.435) (0.580) (0.566) (0.835)

Manufacturer price 0.409*** 0.322*** 0.406*** 0.316***
(0.060) (0.071) (0.058) (0.069)

Observations 355 277 355 277
R-squared 0.829 0.546 0.827 0.535

Standard errors are in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

This regression uses the monthly average carrier-OS-level prices and the one-
month lagged OS network sizes from August 2011 to October 2013. We also
control for phone characteristics, OS-specific version updates, OS dummies,
and carrier dummies in all specifications.

6The value of the F-statistic for the first-stage regression is 2239.26, which is significantly larger
than the rule-of-thumb value (10) for the weak-IV test.

23



7 Conclusion

This paper aims to investigate the dynamic pricing strategy of multi-network firms.

While many industries (e.g., smartphone, television, and automobile) feature multi-

network firms, the literature has paid little attention to their dynamic pricing strategy.

This paper fills the gap by studying the multi-network firms’ pricing strategies.

Multi-network firms face very different dynamic pricing problems from single-network

firms. First, they have a preference for network concentration. This is because their

profits increase with network concentration. This preference gives them an incentive to

choose lower prices for the initially larger networks. Second, they have greater market

power than single-network firms because they sell multiple networks’ products and thus

can internalize the competition across networks. This market power effect has a posi-

tive on their prices for all networks. Third, a spillover effect exists across multi-network

firms when they sell the same networks’ products. This reduces each multi-network

firm’s incentive to invest on the network sizes with low prices. Thus, the spillover effect

has a positive impact on all networks’ prices. By estimating a structural model and

analyzing counterfactual scenarios, Luo (2022) empirically shows these three impacts

in the smartphone industry.

To analyze the multi-network firms’ pricing strategy theoretically, we set up a finite-

horizon theoretical model with two networks to compare the pricing strategies of multi-

and single-network firms. Instead of using the Hotelling demand model or the demand

setup in Cabral (2011), we use the discrete choice demand model. This model not

only allows consumers to choose the outside option (not joining any network) in each

period but also allows the market size to change across periods. These features make

the discrete choice model a more realistic setting than the demand models mentioned

above.

By solving the firms’ pricing problems and games, we find the following results.
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First, with single-network firms, the equilibrium price of the initially larger network is

greater then the price of the smaller network in each period. This result is similar to

that in Cabral (2011). However, the demand model is very different in this paper. In

addition, we show that, although the larger network has higher prices, it can keep the

network size advantage through out the game. Second, multi-network firms set lower

prices for the products with larger networks than those with smaller networks before

the last period, which is the opposite of the single-network firms’ pricing pattern. This

implies that the multi-network firms’ preference for network concentration is playing

an important role. This strategy enhances the network advantage of the initially larger

network and increases the firms’ long-run profits. Third, compared with the single-

network firm case, the market becomes more concentrated in the multi-network case.

The multi-network firms’ pricing strategy is present in the smartphone industry,

where the smartphone OS network effect exists, and the telecom carriers act like multi-

network firms. The carriers set prices for two-year contract smartphones by choosing

contract discounts for smartphones. The amount of discount varied across smartphones

and OSs. We use monthly carrier-OS-level data from 2011 to 2013 to show the multi-

OS carriers’ pricing strategies of the smartphones. We regress the carriers’ contract

prices for smartphones on the lagged OS network sizes and deal with the endogeneity

in the OS network size with an IV. The results show that the multi-OS carriers choose

lower prices for the larger OSs (iOS and Android) than for the smaller OSs (Blackberry

and Windows Phone). This finding is consistent with the multi-network firms’ pricing

strategy in the theoretical model.

With the emergence of new industries that rely on the consumer networks (e.g.,

online shopping, video streaming, electric vehicles, and delivery services), more studies

on the impacts of network effects on the firms’ prices and market concentration will be

very important. The results of this paper shed light on different types of firms’ pricing
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strategies and market concentration in industries with network effects, especially in

industries with multi-network firms.
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Appendix

A Proofs in the Two-OS, Two-Period Model

Lemma 1. Given that the two models have the same unit cost, the multi-network firm
chooses the same price for A and B in the second period: p∗cA2 = p∗cB2.

Proof. Let the unit cost of the two models be c. The firm’s profit in the 2nd period is:

π2(pA1, pB1, pA2, pB2) =
∑
j=A,B

(pj2 − c)M2sj2

=
∑
j=A,B

(pj2 − c)M2
e(δj+γnj2−αpj2)

1 +
∑

k=A,B e(δk+γnk2−αpk2)
.
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The FOC with respect to pA2 is:

sA2 − α(p∗A2 − c)sA2(1− sA2) + α(p∗B2 − c)sA2sB2 = 0, (A.1)

which is equivalent to:

1− α(p∗A2 − c) + α(p∗A2 − c)sA2 + α(p∗B2 − c)sB2 = 0. (A.2)

Similarly for B, we have:

1− α(p∗B2 − c) + α(p∗A2 − c)sA2 + α(p∗B2 − c)sB2 = 0. (A.3)

Compare equations (A.2) and (A.3), we get p∗A2 = p∗B2.

A.1 Proof of Proposition 1

Proof. I solve the two-period game backwards. Let the price in the 2nd period of the
two models be p∗2. Then plug p∗2 and c = 0 into equation (A.1). We get:

1− αp∗2(1− sA2 − sB2) = 0.

Plug in the sales market share equations and rearrange the terms. We get:

αp∗2 − 1 = e(δA+γnA2−αp∗2) + e(δB+γnB2−αp∗2). (A.4)

The total differentiation of (A.4) is:

α
∂p∗2
∂nA2

= e(δA+γnA2−αp∗2)(γ − α ∂p∗2
∂nA2

)− αe(δB+γnB2−αp∗2)
∂p∗2
∂nA2

.

Then we can solve for
∂p∗2
∂nA2

:
∂p∗2
∂nA2

=
γ

α
sA2. (A.5)

Similarly for
∂p∗2
∂nB2

, we have:
∂p∗2
∂nB2

=
γ

α
sB2. (A.6)

28



Then the profit in the 2nd period is:

π2 =
∑
j=A,B

pj2M2sj2

= p∗2M2(sA2 + sB2)

= p∗2M2(1−
1

1 + e(δA+γnA2−αp∗2) + e(δB+γnB2−αp∗2)
)

= p∗2M2(1−
1

αp∗2
)

=
M2

α
(αp∗2 − 1).

(A.7)

Then the maximization problem in the first period is:

max
pA1,pB1

π1(pA1, pB1) + βπ2(pA1, pB1, p
∗
2(pA1, pB1))

= max
pA1,pB1

∑
j=A,B

pj1M1sj1 +
β

α
(αp∗2(p

∗
A1, p

∗
B1)− 1)M2

= max
pA1,pB1

∑
j=A,B

pj1M1sj1 + β(p∗2(pA1, pB1)−
1

α
)M1s01.

(A.8)

in which s01 = 1 − sA1 − sB1 (0 means the outside option) and those who didn’t buy
any smartphone in the first period enter the second period, M2 = M1s01. Then the
FOC with respect to pA1 is:

0 =sA1 − αp∗A1sA1(1− sA1) + αp∗B1sA1sB1

+ αβ(p∗2(pA1, pB1)−
1

α
)sA1s01 + β

∂p∗2
∂pA1

s01,
(A.9)

in which the partial derivative of price p∗2 with respect to 1st period price pA1 is:

∂p∗2
∂pA1

=
∂p∗2
∂nA2

∂nA2
∂pA1

+
∂p∗2
∂nB2

∂nB2

∂pA1

=
∂p∗2
∂nA2

M1(−α)sA1(1− sA1) +
∂p∗2
∂nB2

M1αsA1sB1.

Plug
∂p∗2
∂pA1

into (A.9), we get:

1− αp∗A1 + αp∗A1sA1 + αp∗B1sB1 + β(p∗2 −
1

α
)αs01

+ βM1s01[−α
∂p∗2
∂nA2

(1− sA1) + α
∂p∗2
∂nB2

sB1] = 0.
(A.10)

Similarly for OS B, the first-order condition of profit with respect to price pB1 gives the
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following equation:

1− αp∗B1 + αp∗B1sB1 + αp∗A1sA1 + β(p∗2 −
1

α
)αs01

+ βM1s01[−α
∂p∗2
∂nB2

(1− sB1) + α
∂p∗2
∂nA2

sA1] = 0.
(A.11)

Then by comparing equations (A.10) and (A.11), we get:

− αp∗A1 + βM1s01[−α
∂p∗2
∂nA2

(1− sA1) + α
∂p∗2
∂nB2

sB1]

=− αp∗B1 + βM1s01[−α
∂p∗2
∂nB2

(1− sB1) + α
∂p∗2
∂nA2

sA1].

Plug in the partial derivatives in (A.5) and (A.6), we get:

p∗A1 − p∗B1 =
βγ

α
M1s01(sB2 − sA2). (A.12)

Next we need to prove p∗A1 < p∗B1 if nA1 > nB1. That is, the 1st period price for the
large OS is lower than that for the small OS. Notice that sB2 < sA2 ⇔ nB2 < nA2, given
p∗B2 = p∗A2 and δA = δB = δ. Next We discuss the three cases of possible relationship
between p∗A1 and p∗B1 to prove that p∗A1 < p∗B1 must hold to maximize profit.

First, suppose p∗A1 = p∗B1. Then nB2 < nA2. Because nj2 = nj1 +M1sj1, nA1 > nB1,
and sA1 = sB1. But this means (A.12) is violated because sB2 − sA2 < 0.

Second, suppose p∗A1 > p∗B1. If this is true, then (A.12) implies that sB2 > sA2, which
means that nB2 > nA2. That is, the initial OS network advantage of A is reversed in
the 2nd period due to high price of A. Since nj2 = nj1 +M1sj1, nB2 > nA2 implies that
sB1 > sA1. That is, the sales share of B is higher than that of A in the first period. Use
the equation of sales market shares, we get:

e(δ+γnB1−αp∗B1) > e(δ+γnA1−αp∗A1). (A.13)

Let (p∗A1, p
∗
B1, p

∗
2) bet the profit maximization prices in the two periods. Then the

firm’s total profit is:

Π∗ = M1
p∗A1e

(δ+γnA1−αp∗A1) + p∗B1e
(δ+γnB1−αp∗B1) + β/α(αp∗2 − 1)

1 + e(δ+γnA1−αp∗A1) + e(δ+γnB1−αp∗B1)
.

Now consider a different price plan for the two periods (p′A1, p
′
B1, p

∗
2), in which:

γnA1 − αp′A1 = γnB1 − αp∗B1,

γnB1 − αp′B1 = γnA1 − αp∗A1.

Then p′A1 =
γnA1−γnB1+αp

∗
B1

α
and p′B1 =

γnB1−γnA1+αp
∗
A1

α
. The firm’s total profit with this
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price plan is:

Π′ = M1
p′A1e

(δ+γnA1−αp′A1) + p′B1e
(δ+γnB1−αp′B1) + β/α(αp∗2 − 1)

1 + e(δ+γnA1−αp′A1) + e(δ+γnB1−αp′B1)

= M1
p′B1e

(δ+γnA1−αp∗A1) + p′A1e
(δ+γnB1−αp∗B1) + β/α(αp∗2 − 1)

1 + e(δ+γnA1−αp∗A1) + e(δ+γnB1−αp∗B1)
.

Take the difference of the two profits with the two price plans, we have:

Π′ − Π∗ = M1
γ/α(nA1 − nB1)(e

(δ+γnB1−αp∗B1) − e(δ+γnA1−αp∗A1))

1 + e(δ+γnA1−αp∗A1) + e(δ+γnB1−αp∗B1)
.

The according to (A.13), we know that Π′ > Π∗. Hence, there exists another price plan
that leads to higher profit than (p∗A1, p

∗
B1, p

∗
2), when p∗A1 > p∗B1. Therefore p∗A1 > p∗B1

can not be the profit maximization solution.
Therefore, the firm’s profit maximization prices in the first period must satisfy

p∗A1 < p∗B1. This implies that nA2 > nB2 and thus sA2 > sB2. Then we have:

p∗A1 − p∗B1 =
βγ

α
M1s01(s

os
B2 − sosA2),

nA2 − nB2 = nA1 − nB1 +M1(sA1 − sB1).

Based on these two equations, we have the following conclusions:
(1) The optimal price of A is lower than that of B in the first period: p∗A1 < p∗B1.
(2) The price gap |p∗A1 − p∗B1| between the two models increase as the OS network

effect becomes stronger (γ increases).
(3) The OS market share difference (nA2 − nB2) increases in the OS network effect

γ.

A.2 Proof of Proposition 2

Proof. This proof of the single-network firms’ dynamic pricing game has three steps.
The first step shows that the price of the larger OS network is higher in the second
period. The second step shows that the price of the larger OS network is higher in the
first period. The third step shows that the larger operating system keeps its advantage
in the second period. Combining the three steps, Proposition 2 is proved.

1. Step 1. This steps shows that, if nA2 > nB2 at the beginning of the second period,
then psA2 > psB2. firm j’s problem in the second period is:

max
psj2
{πsj2(psj2, ps−j2)} = psj2sj2M2

= psj2
e(δj+γnj2−αpsj2)

1 +
∑

k=A,B e(δk+γnk1−αpsk2)
M2.
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Then the FOC w.r.t. price is:

sj2 + p∗sj2(−αsj2 + αs2j2) = 0,

which is equivalent to the following equation since sj2 > 0:

p∗sj2 =
1

α(1− sj2)
. (A.14)

By comparing the equations (A.14) for model A and B, we have the following
equation:

p∗sA2
p∗sB2

=
1− sB2

1− sA2
. (A.15)

From equation (A.15) and the assumption that nA2 > nB2, the result p∗sA2 > p∗sB2

holds. The proof is as follows. Suppose that p∗sA2 ≤ p∗sB2. This implies that model
A not only has larger OS network size (nA2 > nB2), but also has a lower price in
the second period. then sA2 > sB2. So the LHS (left hand side) of equation (A.15)
is less than 1 but the RHS (right hand side) is greater than 1. This contradiction
shows that p∗sA2 > p∗sB2 when nA2 > nB2. That is, the model with larger OS network
size at the beginning of the second period has higher price in the second period.

2. Step 2. This step is to show that if nA1 > nB1 and nA2 > nB2, then p∗sA1 > p∗sB1.
That is, the optimal price of the larger OS model is higher in the first period.

From the Step 1, the maximum profit in the second period for j is:

π∗sj2 = p∗sj2sj2M2

=
sj2

α(1− sj2)
(1− nA2 − nB2)

=
sj2

α(1− sj2)
M1s01,

in which s01 is the market share of the outside option in the first period. Then
firm j’s profit maximization problem in the first period is:

max
psj1
{πsj1(psj1, ps−j1) + βπ∗sj2}

= psj1sj1M1 +
β

α

sj2
1− sj2

s01M1

= psj2
e(δj+γnj1−αpsj1)

1 +
∑

k=A,B e(δk+γnk1−αpsk1)
M1 +

β

α

sj2
1− sj2

s01M1.

32



Then the FOC w.r.t. psj1 is:

sj1 − αsj1(1− sj1) + βs01sj1
sj2

1− sj2

+
β

α
s01

1

(1− sj2)2
∂sj2
∂sj1

∂sj1
∂psj1

= 0 .
(A.16)

Using the definition of sj2 and sj1, we get the following partial derivatives:

∂sj2
∂sj1

= γsj2(1− sj2),

∂sj1
∂psj1

= −M1αsj1(1− sj1).
(A.17)

Plug equations in (A.17) into equation (A.16) and rearrange the terms, we get
the following equation:

1 + βs01
sj2

1− sj2
= (1− sj1)(αp∗sj1 − βM1s01

γsj2
1− sj2

). (A.18)

Equation (A.18) can be applied to both model A and model B, then by comparing
the two sides for the two models, we get:

1 + βs01
sA2

1−sA2

1 + βs01
sB2

1−sB2

=
1− sA1
1− sB1︸ ︷︷ ︸

R1

∗
αp∗sA1 − βM1s01

γsA2

1−sA2

αp∗sB1 − βM1s01
γsB2

1−sB2︸ ︷︷ ︸
R2

. (A.19)

Given the assumption that nA2 > nB2, it is shown in Step 1 that sA2 > sB2. So
for the equation (A.19), LHS > 1. Next, we show that p∗sA1 > p∗sB1.

Suppose p∗sA1 ≤ p∗sB1, then sA1 > sB1 because model A not only has the OS network
advantage but also lower or equal price than model B. So on the RHS of equation
(A.19), we have R1 < 1. In addition, since sA2 > sB2, then R2 < 1 in equation
(A.19). Thus, the RHS < 1 for equation (A.19), which contradicts the result
that LHS > 1.

Therefore, in the first period, the price of model A is higher than model B,
p∗sA1 > p∗sB1, when nA2 > nB2 and the nA1 > nB1. In the next step, we show that
nA2 > nB2 holds if nA1 > nB1.

3. Step 3. This step shows that the manufacturer A keeps its OS network advantage
to the second period: nA2 > nB2 if nA1 > nB1. Suppose on the contradictory that
nA2 ≤ nB2, then according to Step 1 result, sB2 > sA2. So LHS < 1 for equation
(A.19). Also nA2 ≤ nB2 implies that sA1 < sB1, so R1 > 1 for equation (A.19).
In addition p∗sA1 > p∗sB1 and that sB2 > sA2 imply that R2 > 1 for equation (A.19).
Hence, the RHS > 1, which contradicts that LHS < 1. Thus, nA2 ≤ nB2 can’t
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hold, which means that nA2 > nB2 holds by contradiction.

The three steps above shows that when the two manufacturers choose prices, the
one with initial OS network advantage choose higher prices in both periods and keeps
its advantage in the second period. So we have proved that: (1), p∗sAt > p∗sBt, for t = 1, 2;
and (2), nA2 > nB2.
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